Locator Identifier Split

Stig Venaas venaas@uninett.no UNINETT

Overview

- A bit of inter-domain history
- The problem
- Loc/ID split
- Mapping systems

A bit of inter-domain history

- In the late 80s one started worrying about exponential growth of global routing table size
- CIDR reduced the growth significantly (92/93)
- IETF started IPng work (93)
- Many proposals
 - TUBA (UDP/TCP over CLNP) (92)
 - PIP (Separates host identifier and provider assigned addresses for routing) (94)
 - SIPP (kind of IPv6 with 64 bit addresses) (94)
 - ENCAPS (routing of ADs (Adm.Domains) using encapsulation between domains with IP addresses of ADs) (96)
 - 8+8/GSE (addresses with 8-byte end host identifier and 8byte locator (97)
 - IPv6 (95)

The problem (1/2)

- Recently people have realised that the current Internet routing has to change
- Routing table growth is too large
 - Multihoming is one reason, no provider aggregation
- Increasing number of BGP updates
 - Partly due to lack of aggregation and number of prefixes
 - Also traffic engineering (load balancing with BGP etc)
- The cost of the specialised hardware needed by routers is growing quicker than Moore's Law
 - Also issues with power/heating

The problem (2/2)

- We more or less have the same problems as in the early 90's that triggered CIDR and IPng work
- IPv6 is no solution, enterprises are not willing to just use provider assigned addresses and host multi-addressing
 - Also want to change providers without renumbering
- Large scale deployment of IPv6 with provider independent addresses might make things worse
- NAT is kind of Id/Loc split
 - A single provider assigned aggregateable address is used for the NAT device (e.g. customer router) and is used as a locator
 - Private addresses are used as identifiers and are independent of location and provider

The goal

- Find a new way to do routing and/or addressing for the Internet that can scale well into the future
- Multihoming and traffic engineering should be possible
 - Do it near the edge without exposing the Internet core to all details?
- Some degree of mobility?
- Allow enterprises to have provider independent addressing?
- Needs to work with IPv6 and preferably IPv4
- There should be a simple transition path
 - No flag day
 - Change only parts of the system?
- There is ongoing work in the IETF, in particular in the Routing Research Group in the IRTF
- We will present some of the ideas and proposals

Locators and identifiers

- There is a general agreement that the main problem is IP addresses used as both identifiers and locators
 - An identifier is used to address one specific host
 - Used by transport and application layers
 - A pure identifier should be fixed independent of the location (which network, which provider etc)
 - A multihomed host should still have just one identifier
 - A locator specifies a location, which network, which provider etc
 - You might say that hosts, stack and apps care about IDs while routers care about locators

Loc/ID examples

- A typical postal address is e.g. John Smith, High Street, London, UK
- The red part (if unique) would be an identifier
 - The person might move or somehow have two post boxes in two different locations
- The blue part is a locator and can be aggregated (hierarchical)
 - The postal service around the world treats all post to UK the same way, sending it to the same next-hop
 - The postal service in UK can send all London post to the same nexthop etc
- When one were looking at IPng (now IPv6) there were proposals like GSE/8+8 for having IP addresses containing prefix and identifier
 - With IPv6 stateless address autoconfig we almost have this
 - 2001:db8:10c:2:1234:56ff:fe78:9abc
 - However the host treats the entire address as an identifier
 - Many people want the prefix part to be provider independent

Loc/ID alternatives

• Split handled by end hosts

- The ID may be in lower bits of the address (ref prev slide)
- The IP address (in packet header) may be locator only
 - Identifiers in e.g. extension header (HIP)
- Split handled by routers
 - First/last-hop routers can rewrite the locator parts of the addresses as needed (e.g. with GSE/8+8)
 - First-hop router may encapsulate the packet with a locator specifying the last-hop router in the outer header
 - Last-hop decapsulates the packet, forwarding the payload to the local host
 - Alternatively do the same at e.g. site border routers where the identifiers are routeable within the site
 - Not quite Id/loc, more hierarchical addressing...

Identifier considerations

- What name space to use
 - Could be e.g. domain names but want it to work with current applications/transports so 32/128 bit (IP addresses)
- Flat or hierarchical?
 - Hierarchical requires change of ID when moving in the hierarchy?
- Derived from, or bound to, locators (Six/One)
- Aggregation may be important for scalable mapping
 - Aligned delegation hierarchy and mapping service topology
- Routeable identifiers at the edges or in overlay?
- Allowing routable identifiers might help transition
- Distinguishable from locators?
 - If all 32 bit numbers are used for locators, one cannot simply inject 32 bit identifiers in the same routing system

ID/Locator considerations

- Who provides the mapping service? Can an enterprise own its identifiers? Dependency on identifier or mapping service providers?
- Flat or hierarchical locators? Independent of topology?
 - E.g. if a locator were a source route it would need to change if the path changed
- Can locators sometimes be used as identifiers?
 - E.g. for routers

Mapping considerations

- Push or pull?
- Trade-off of size (amount of state), refresh times and latency
- Can end system or edge router have full knowledge? How to maintain the information?
- Can it be requested when needed?
 - Delay or drop data packets until known?
 - Some kind of default forwarder or overlay?
 - Caching may be of some help
 - How quickly may mappings change to provide traffic engineering or some degree of mobility?
- Security
 - How to know that the locator is correct? Can traffic be hijacked?

Further reading

- Problem statement
 - From IAB routing workshop Amsterdam Oct 2006
 - http://tools.ietf.org/html/draft-iab-raws-report-02
- IRTF RRG
 - http://www.irtf.org/charter?gtype=rg&group=rrg
- IRTF RRG Proposals and presentations
 - http://www3.tools.ietf.org/group/irtf/trac/wiki/Routin gResearchGroup